Coding Patterns
Scikit-Learn Patterns
1. Basic Pipeline (Prevent Data Leakage)
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
pipeline = Pipeline([
('scaler', StandardScaler()),
('clf', LogisticRegression())
])
pipeline.fit(X_train, y_train)
preds = pipeline.predict(X_test)2. Grid Search with Cross-Validation
from sklearn.model_selection import GridSearchCV
params = {'clf__C': [0.1, 1, 10], 'clf__penalty': ['l1', 'l2']}
grid = GridSearchCV(pipeline, params, cv=5, scoring='f1')
grid.fit(X_train, y_train)
print(grid.best_params_)3. Random Search (Faster)
4. Column Transformer (Mixed Types)
5. Stratified K-Fold
6. Class Weight for Imbalance
NumPy Vectorization
7. Euclidean Distance Matrix
8. Normalize Vectors (L2 Norm)
9. Softmax Implementation
10. One-Hot Encoding
11. Argmax with Random Tie-Breaking
12. Moving Average
PyTorch Patterns
13. Basic Training Loop
14. Validation Loop
15. Save and Load Model
16. Custom Dataset
17. Learning Rate Scheduler
18. Early Stopping
Evaluation Code
19. Classification Report
20. ROC-AUC
21. Precision-Recall Curve
22. Feature Importance (Tree Models)
Implement From Scratch
23. K-Means Clustering
24. Logistic Regression (Gradient Descent)
25. Naive Bayes (Gaussian)
26. KNN Classifier
Interview Coding Questions
Last updated